Boundary conditions for regularized 13-moment-equations for micro-channel-flows

نویسندگان

  • Manuel Torrilhon
  • Henning Struchtrup
چکیده

Boundary conditions are the major obstacle in simulations based on advanced continuum models of rarefied and micro-flows of gases. In this paper we present a theory how to combine the regularized 13-moment-equations derived from Boltzmann’s equation with boundary conditions obtained from Maxwell’s kinetic accommodation model. While for the linear case these kinetic boundary conditions suffice, we need additional conditions in the non-linear case. They are provided by the bulk solutions obtained after properly transforming the equations while keeping their asymptotic accuracy with respect to Boltzmann’s equation. After finding a suitable set of boundary conditions and equations, a numerical method for generic shear flow problems is formulated. Several test simulations demonstrate the stable and oscillation-free performance of the new approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method

The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...

متن کامل

A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions

The challenge of modeling low-speed rarefied gas flow in the transition regime is well known. In this paper, we propose a numerical solution procedure for the regularized 13 moment equations within a finite-volume framework. The stress and heat flux equations arising in the method of moments are transformed into the governing equations for the stress and heat flux deviators based on their first...

متن کامل

Regularization and Boundary Conditions for the 13 Moment Equations

We summarize our recent contributions to the development of macroscopic transport equations for rarefied gas flows. A combination of the ChapmanEnskog expansion and Grad’s moment method, termed as the order of magnitude method, yields the regularized 13 moment equations (R13 equations) which are of super-Burnett order. A complete set of boundary conditions is derived from the boundary condition...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

H theorem, regularization, and boundary conditions for linearized 13 moment equations.

An H theorem for the linearized Grad 13 moment equations leads to regularizing constitutive equations for higher fluxes and to a complete set of boundary conditions. Solutions for Couette and Poiseuille flows show good agreement with direct simulation Monte Carlo calculations. The Knudsen minimum for the relative mass flow rate is reproduced.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008